If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7n^2-35=0
a = 7; b = 0; c = -35;
Δ = b2-4ac
Δ = 02-4·7·(-35)
Δ = 980
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{980}=\sqrt{196*5}=\sqrt{196}*\sqrt{5}=14\sqrt{5}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-14\sqrt{5}}{2*7}=\frac{0-14\sqrt{5}}{14} =-\frac{14\sqrt{5}}{14} =-\sqrt{5} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+14\sqrt{5}}{2*7}=\frac{0+14\sqrt{5}}{14} =\frac{14\sqrt{5}}{14} =\sqrt{5} $
| (1-x)^2=3x^2-4x+3 | | Y=2.5x-125+100 | | 8x/3-7x=5 | | 2x+7=+3x | | Y=2.5x-25 | | (1-x)=3x^2-4x+3 | | 1/2x+2x=55 | | -13=-7u+2(u+6) | | -7-5x+4=-14x+7+2x | | -12x=216 | | -9n^2+2n^2(n^2+5)=45 | | 16t^2+96t+48=0 | | 1/3x-8=x+4 | | (3x-6)(-2x-14)=2x+17 | | (x-3)^2=0 | | 18=-6/11·h | | -10x+16+4x=-5+36-6x | | (3x+2)(x+5)=120 | | -10/21·c=-15/28 | | 2n^2(n^2+5)=45+9n^2 | | 0=-16t^2+96t+48 | | 18x^2+31x-49=0 | | 2/3=4a/6 | | 3x+3=14-6x | | 16-3p=2÷3p+5 | | m+13=3 | | -8+7x+5x=19-5x+20 | | -2x-5+x=4x-3-3x | | -5(-4y+7)-y=7(y-4)-5 | | X^3-8x^2+13x=0 | | -6+4x=2x+4-3x-5 | | 13x+24x-32x=144 |